The Riemann Problem for the Transportation Equations in Gas Dynamics
In this volume, the one-dimensional and two-dimensional Riemann problems for the transportation equations in gas dynamics are solved constructively. In either the 1-D or 2-D case, there are only two kinds of solutions: one involves Dirac delta waves, and the other involves vacuums, which have been merely discussed so far. The generalized Rankine-Hugoniot and entropy conditions for Dirac delta waves are clarified with viscous vanishing method. All of the existence, uniqueness and stability for viscous perturbations are proved analytically.