SULJE VALIKKO

avaa valikko

Machine Learning : From the Classics to Deep Networks, Transformers, and Diffusion Models
110,50 €
Academic Press
Sivumäärä: 1200 sivua
Asu: Pehmeäkantinen kirja
Painos: 3. ed.
Julkaisuvuosi: 2025, 01.03.2025 (lisätietoa)
Kieli: Englanti

Machine Learning: From the Classics to Deep Networks, Transformers and Diffusion Models, Third Edition starts with the basics, including least squares regression and maximum likelihood methods, Bayesian decision theory, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines. Bayesian learning is treated in detail with emphasis on the EM algorithm and its approximate variational versions with a focus on mixture modelling, regression and classification. Nonparametric Bayesian learning, including Gaussian, Chinese restaurant, and Indian buffet processes are also presented. Monte Carlo methods, particle filtering, probabilistic graphical models with emphasis on Bayesian networks and hidden Markov models are treated in detail. Dimensionality reduction and latent variables modelling are considered in depth. Neural networks and deep learning are thoroughly presented, starting from the perceptron rule and multilayer perceptrons and moving on to convolutional and recurrent neural networks, adversarial learning, capsule networks, deep belief networks, GANs, and VAEs. The book also covers the fundamentals on statistical parameter estimation and optimization algorithms. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all methods and techniques are explained in depth, supported by examples and problems, providing an invaluable resource to the student and researcher for understanding and applying machine learning concepts. New to this edition The new material includes an extended coverage of attention transformers, large language models, self-supervised learning and diffusion models.




  • Provides a number of case studies and applications on a variety of topics, such as target localization, channel equalization, image denoising, audio characterization, text authorship identification, visual tracking, change point detection, hyperspectral image unmixing, fMRI data analysis, machine translation, and text-to-image generation. . Most chapters include a number of computer exercises in both MatLab and Python, and the chapters dedicated to deep learning include exercises in PyTorch. New to this edition The new material includes an extended coverage of attention transformers, large language models, self-supervised learning and diffusion models.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! Tuote ilmestyy 01.03.2025. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning : From the Classics to Deep Networks, Transformers, and Diffusion Modelszoom
Näytä kaikki tuotetiedot
ISBN:
9780443292385
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste