SULJE VALIKKO

avaa valikko

Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory
169,90 €
World Scientific Publishing Company
Sivumäärä: 384 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2024, 20.09.2024 (lisätietoa)
Kieli: Englanti
This book presents the extended Lagrange and Hamilton formalisms of point mechanics and field theory in the usual tensor language of standard textbooks on classical dynamics. The notion 'extended' signifies that the physical time of point dynamics as well as the space-time in field theories are treated as dynamical variables. It thus elaborates on some important questions including: How do we convert the canonical formalisms of Lagrange and Hamilton that are built upon Newton's concept of an absolute time into the appropriate form of the post-Einstein era? How do we devise a Hamiltonian field theory with space-time as a dynamical variable in order to also cover General Relativity?In this book, the authors demonstrate how the canonical transformation formalism enables us to systematically devise gauge theories. With the extended canonical transformation formalism that allows to map the space-time geometry, it is possible to formulate a generalized theory of gauge transformations. For a system that is form-invariant under both a local gauge transformation of the fields and under local variations of the space-time geometry, we will find a formulation of General Relativity to emerge naturally from basic principles rather than being postulated.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 2-3 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theoryzoom
Näytä kaikki tuotetiedot
ISBN:
9789814578417
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste