In recent decades, there has been an increasing interest in using machine learning and, in the last few years, deep learning methods combined with other vision and image processing techniques to create systems that solve vision problems in different fields. There is a need for academicians, developers, and industry-related researchers to present, share, and explore traditional and new areas of computer vision, machine learning, deep learning, and their combinations to solve problems. Computer Vision and Image Processing in the Deep Learning Era is designed to serve researchers and developers by sharing original, innovative, and state-of-the-art algorithms and architectures for applications in the areas of computer vision, image processing, biometrics, virtual and augmented reality, and more. It integrates the knowledge of the growing international community of researchers working on the application of machine learning and deep learning methods in vision and robotics. Covering topics such as brain tumor detection, heart disease prediction, and medical image detection, this premier reference source is an exceptional resource for medical professionals, faculty and students of higher education, business leaders and managers, librarians, government officials, researchers, and academicians.