A snapshot of the central ideas used to control fracture properties of engineered structural metallic materials, Advanced Structural Materials: Properties, Design Optimization, and Applications illustrates the critical role that advanced structural metallic materials play in aerospace, biomedical, automotive, sporting goods, and other industries in the twenty-first century. The book presents an overview of the structure, properties, and applications of these materials, including the basic ideas behind their design. It contains examples and accessible language, elucidating the basic concepts that guide the development of new alloys and composite materials.
With in-depth reviews from leading contributors, the text develops an understanding of the breadth and depth of advances in the field. It begins with a broad introduction to advanced structural materials, then examines materials at the frontiers of emerging applications such as biomaterials, MEMS, amorphous materials, and nanotechnology. The chapter authors are experts in their own right and they assume no prior knowledge of a given material system, delineating the fundamental concepts and applications of advanced structural materials. The rich array of carefully selected topics provides useful insights into the structure, properties, and applications of advanced structural materials.