SULJE VALIKKO

avaa valikko

On the First-Order Theory of Real Exponentiation
18,70 €
Edizioni della Normale
Sivumäärä: 107 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2008, 19.03.2008 (lisätietoa)
Kieli: Englanti
Tuotesarja: Theses (Scuola Normale Superiore)

The first-order theory of real exponentiation has been studied by many mathematicians in the last fifty years, in particular by model theorists, real geometers and number theorists. The aim of this work is to present the results obtained so far in this area and to improve and refine them. In the early 1990s A. Macintyre and A.J. Wilkie proved that the theory of real exponentiation is decidable, provided that Schanuel’s conjecture holds. In the proof of their result, they proposed a candidate for a complete and recursive axiomatization of the theory. While simplifying their axiomatization, the author of this book analyses (in the first three chapters) the model theory and geometry of a broad class of functions over real closed fields. Even though the methods used are elementary, the results hold in great generality. The last chapter is devoted solely to the decidability problem for the real exponential field.



Loppuunmyyty
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
On the First-Order Theory of Real Exponentiationzoom
Näytä kaikki tuotetiedot
ISBN:
9788876423253
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste