Music Information Retrieval surveys the young but established field of research that is Music Information Retrieval (MIR). In doing so, it pays particular attention to the latest developments in MIR, such as semantic auto-tagging and user-centric retrieval and recommendation approaches. It starts by reviewing the well-established and proven methods for feature extraction and music indexing, from both the audio signal and contextual data sources about music items, such as web pages or collaborative tags. These in turn enable a wide variety of music retrieval tasks, such as semantic music search or music identification (“query by example"").
Subsequently, it elaborates on the current work on user analysis and modeling in the context of music recommendation and retrieval, addressing the recent trend towards user-centric and adaptive approaches and systems. A discussion follows about the important aspect of how various MIR approaches to different problems are evaluated and compared. It concludes with a discussion about the major open challenges facing MIR.