SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Deep Learning in Multi-step Prediction of Chaotic Dynamics : From Deterministic Models to Real-World Systems
56,40 €
Springer
Sivumäärä: 104 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2022, 15.02.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: PoliMI SpringerBriefs

The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Deep Learning in Multi-step Prediction of Chaotic Dynamics : From Deterministic Models to Real-World Systemszoom
Näytä kaikki tuotetiedot
ISBN:
9783030944810
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste