Interest in hybrid materials has accelerated recently, in particular because tailoring materials properties through organization of organic/inorganic composites at nanometer length scales is now an important focus for numerous diverse research domains. This book's objective here is to create a communal forum for researchers involved in all areas of organic/inorganic hybrid materials to share perspectives, to learn about leading-edge science and engineering occurring around the world, and to develop new ideas. The book is divided into focus areas that address synthesis and characterization methods, functional hybrid materials, hybrid materials influenced by biology, structured mesoporous materials and materials with multiscale organization. Topics include: methods of patterning hybrid materials; hybrid materials for photonic applications; mesoporous films and monoliths; biofunctional materials; layered hybrid materials; applications-oriented hybrid materials; hybrid materials for electronics, optoelectronics and semiconductor applications; methods of characterizing hybrid materials; and novel synthetic methods.