Wireless sensor networks have gained significant attention industrially and academically due to their wide range of uses in various fields. Because of their vast amount of applications, wireless sensor networks are vulnerable to a variety of security attacks. The protection of wireless sensor networks remains a challenge due to their resource-constrained nature, which is why researchers have begun applying several branches of artificial intelligence to advance the security of these networks. Research is needed on the development of security practices in wireless sensor networks by using smart technologies.
Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks provides emerging research exploring the theoretical and practical advancements of security protocols in wireless sensor networks using artificial intelligence-based techniques. Featuring coverage on a broad range of topics such as clustering protocols, intrusion detection, and energy harvesting, this book is ideally designed for researchers, developers, IT professionals, educators, policymakers, practitioners, scientists, theorists, engineers, academicians, and students seeking current research on integrating intelligent techniques into sensor networks for more reliable security practices.