This is a comprehensive discussion of complexity as it arises in physical, chemical, and biological systems, as well as in mathematical models of nature. Common features of these apparently unrelated fields are emphasised and incorporated into a uniform mathematical description, with the support of a large number of detailed examples and illustrations. The quantitative study of complexity is a rapidly developing subject with special impact in the fields of physics, mathematics, information science, and biology. Because of the variety of the approaches, no comprehensive discussion has previously been attempted. This book will be of interest to graduate students and researchers in physics (nonlinear dynamics, fluid dynamics, solid-state, cellular automata, stochastic processes, statistical mechanics and thermodynamics), mathematics (dynamical systems, ergodic and probability theory), information and computer science (coding, information theory and algorithmic complexity), electrical engineering and theoretical biology.