This book, which is a result of a coordinated effort by 22 researchers from five different countries, addresses the methods of determining the local and global mechanical properties of a variety of materials: metals, plastics, rubber, and ceramics. The first chapter treats nanoindentation techniques comprehensively. Chapter 2 concerns polymer surface properties using nanoindentation techniques. Chapter 3 deals with the wear properties of dental composites. Chapter 4 compares the global and local properties of a lead-free solder. Chapter 5 discusses the methods of determining plastic zones at the crack tip. Fatigue resistance of a synthetic polymer under different loading conditions is dealt with in Chapter 6. Chapter 7 is a review of the methods used to measure fatigue crack growth resistance. Chapter 8 treats bulk and surface properties of coated materials, and the final chapter presents a method for determining elastic constants using a resonance technique. All in all, its depth of coverage makes it a must-have for research scholars, graduate students, and teachers.