This book describes advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. Chaotic Scattering is illustrated with disk scatterers and with examples of unimolecular chemical reactions and then generalized to transport in spatially extended systems. This book will be bought by researchers interested in chaos, dynamical systems, chaotic scattering, and statistical mechanics in theoretical, computational and mathematical physics and also in theoretical chemistry.