Robust control theory allows for changes in a system whilst maintaining stability and performance. Applications of this technique are very important for dependable embedded systems, making technologies such as drones and other autonomous systems with sophisticated embedded controllers and systems relatively common-place.
The aim of this book is to present the theoretical and practical aspects of embedded robust control design and implementation with the aid of MATLAB® and SIMULINK®. It covers methods suitable for practical implementations, combining knowledge from control system design and computer engineering to describe the entire design cycle. Three extended case studies are developed in depth: embedded control of a tank physical model; robust control of a miniature helicopter; and robust control of two-wheeled robots.
These are taken from the area of motion control but the book may be also used by designers in other areas. Some knowledge of Linear Control Theory is assumed and knowledge of C programming is desirable but to make the book accessible to engineers new to the field and to students, the authors avoid complicated mathematical proofs and overwhelming computer architecture technical details. All programs used in the examples and case studies are freely downloadable to help with the assimilation of the book contents.