The chapters in this book deal with:
Basic formulation of waveguide cavity resonator equations especially when the cross sections of the guides and resonators have arbitrary shapes. The focus is on expressing the total field energy within such a cavity resonator as a quadratic form in the complex coefficients that determine the modal expansions of the electromagnetic field.
The reviews of basic statistical signal processing covering linear models, fast algorithms for estimating the parameters in such linear models, applications of group representation theory to image processing problems especially the representations of the permutation groups and induced representation theory applied to image processing problems involving the three dimensional Euclidean motion group.
The Hartree-Fock equations for approximately solving the two electron atomic problem taking spin-orbit magnetic field interactions into account has been discussed. In the limit as the lattice tends to a continuum, the convergence of the stochastic differential equations governing interacting particles on the lattice to a hydrodynamic scaling limit.
It will be useful to undergraduate and postgraduate students with courses on transmission lines and waveguides, and statistical signal processing.
Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).