Linear Dimensionality Reduction - An Approach Based on Scatter Matrices
In almost all fields of applications, statisticians are confronted with highly complex data sets with large dimensions. Dimension reduction methods naturally provide a better understanding of the data and reveal hidden structures. The book provides tools with a unifying statistical theory to recover hidden structures, latent variables, or latent subspaces in multivariate and dependent data. Throughout the book, the theory is illustrated with examples on practical data sets.
Tulossa! 07.05.2021 Kustantajan ilmoittama saatavuuspäivä on ylittynyt, selvitämme saatavuutta. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme.
Seuraa saatavuutta.