Generalized Symplectic Geometries and the Index of Families of Elliptic-problems
In this book, an index theorem is proved for arbitrary families of elliptic boundary value problems for Dirac operators and a surgery formula for the index of a family of Dirac operators on a closed manifold. Also obtained is a very general result on the cobordism invariance of the index of a family. All results are established by first symplectically rephrasing the problems and then using a generalized symplectic reduction technique. This provides a unified approach to all possible parameter spaces and all possible symmetries of a Dirac operator (eight symmetries in the real case and two in the complex case).