SULJE VALIKKO

avaa valikko

Oseledec Multiplicative Ergodic Theorem for Laminations
78,40 €
American Mathematical Society
Sivumäärä: 174 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 30.03.2017 (lisätietoa)
Kieli: Englanti
Given a $n$-dimensional lamination endowed with a Riemannian metric, the author introduces the notion of a multiplicative cocycle of rank $d$, where $n$ and $d$ are arbitrary positive integers. The holonomy cocycle of a foliation and its exterior powers as well as its tensor powers provide examples of multiplicative cocycles. Next, the author defines the Lyapunov exponents of such a cocycle with respect to a harmonic probability measure directed by the lamination. He also proves an Oseledec multiplicative ergodic theorem in this context. This theorem implies the existence of an Oseledec decomposition almost everywhere which is holonomy invariant.

Moreover, in the case of differentiable cocycles the author establishes effective integral estimates for the Lyapunov exponents. These results find applications in the geometric and dynamical theory of laminations. They are also applicable to (not necessarily closed) laminations with singularities. Interesting holonomy properties of a generic leaf of a foliation are obtained. The main ingredients of the author's method are the theory of Brownian motion, the analysis of the heat diffusions on Riemannian manifolds, the ergodic theory in discrete dynamics and a geometric study of laminations.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Oseledec Multiplicative Ergodic Theorem for Laminations
Näytä kaikki tuotetiedot
ISBN:
9781470422530
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste