The first book to deal with the design and optimization of transistors made from strained layers, Applications of Silicon-Germanium Heterostructure Devices combines three distinct topics-technology, device design and simulation, and applications-in a comprehensive way. Important aspects of the book include key technology issues for the growth of strained layers, background theory of the HBT, how device simulation can be used to predict the optimum HBT device structure for a particular application such as cryogenics, compact SiGe-HBT models for RF applications and the SPICE parameter extraction, and strategies for the enhancement of the high-frequency performance of heterojunction field effect transistors (HFETs) using MOSFET or MODFET structures. The book also covers the design and application of optoelectronic devices and assesses how SiGe technology competes with other alternative technologies in the RF wireless communications marketplace.