Strange Attractors for Periodically Forced Parabolic Equations
The authors prove that in systems undergoing Hopf bifurcations, the effects of periodic forcing can be amplified by the shearing in the system to create sustained chaotic behaviour. Specifically, strange attractors with SRB measures are shown to exist. The analysis is carried out for infinite dimensional systems, and the results are applicable to partial differential equations. Application of the general results to a concrete equation, namely the Brusselator, is given.