Prestressed Members with External Fiber Reinforced Polymer (FRP) Tendons: Design, Assessment and Modelling provides an overview of using FRPs, including how to predict the short-term and long-term behavior of externally prestressed concrete or steel-concrete composite members, their second-order effects, and how to examine the effectiveness of using FRP tendons instead of steel tendons for external prestressing. As external prestressing is considered to be one of the most powerful techniques in strengthening of existing structures, this book provides a comprehensive resource on the topics covered.
The conventional use of prestressing steel is, however, naturally prone to corrosion. The best strategy to solve completely the corrosion problem is the use of nonmetal materials instead of prestressing steel. Fiber reinforced polymer (FRP) composites are ideal materials used for external tendons for their excellent corrosion resistance, high strength and low weight.
- Covers the use of FRP tendons when compared to those with external steel tendons, including key design issues
- Addresses important topics in the field, including the second-order effects of immediate and sustained loads
- Examines the stress in external tendons, moment redistribution, linear transformation of external cables, and prestress secondary moments
- Covers long-term deformation prediction