SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

R Deep Learning Projects - Master the techniques to design and develop neural network models in R
50,50 €
Packt Publishing Limited
Sivumäärä: 258 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2018, 22.02.2018 (lisätietoa)
Kieli: Englanti
5 real-world projects to help you master deep learning concepts

Key Features

Master the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more
Get to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec
Practical projects that show you how to implement different neural networks with helpful tips, tricks, and best practices

Book DescriptionR is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains.

This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R-including convolutional neural networks, recurrent neural networks, and LSTMs-and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages-such as MXNetR, H2O, deepnet, and more-to implement the projects.

By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.

What you will learn

Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec
Apply neural networks to perform handwritten digit recognition using MXNet
Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification -Implement credit card fraud detection with Autoencoders
Master reconstructing images using variational autoencoders
Wade through sentiment analysis from movie reviews
Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks
Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reduction

Who this book is forMachine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
R Deep Learning Projects - Master the techniques to design and develop neural network models in Rzoom
Näytä kaikki tuotetiedot
ISBN:
9781788478403
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste