Handbook of Vehicle Suspension Control Systems surveys the state-of-the-art in advanced suspension control theory and applications. Topics covered include an overview of intelligent vehicle suspension control systems; intelligence-based vehicle active suspension adaptive control systems; robust active control of an integrated suspension system; an interval type-II fuzzy controller for vehicle active suspension systems; active control for actuator uncertain half-car suspension systems; active suspension control with finite frequency approach; fault-tolerant control for uncertain vehicle suspension systems via fuzzy control approach; h-infinity fuzzy control of suspension systems with actuator saturation; design of sliding mode controllers for semi-active suspension systems with magnetorheological dampers; joint design of controller and parameters for active vehicle suspension; an LMI approach to vibration control of vehicle engine-body systems with time delay; and frequency domain analysis and design of nonlinear vehicle suspension systems.
With contributions from an international selection of researchers, Handbook of Vehicle Suspension Control Systems will find a place on the bookshelves of academic researchers and industrial practitioners in control engineering, particularly those working on applications for the automotive industry.