The technologies for product assembly and manufacturing evolve along with the advancement of enabling technologies such as material science, robotics, machine intelligence as well as information and communication. Furthermore, they may be subject to fundamental changes due to the shift in key product features and/or - gineering requirements. The enabling technologies emerging offer new opportunities for moving up the level of automation, optimization and reliability in product assembly and ma- facturing beyond what have been possible. We see assembly and manufacturing becoming more Intelligent with the perception-driven robotic autonomy, more flexible with the human-robot coupled collaboration in work cells, and more in- grated in scale and complexity under the distributed and networked frameworks. On the other hand, the shift in key product features and engineering requirements dictates the new technologies and tools for assembly and manufacturing to be - veloped. This may be exemplified by a high complexity of micro/nano system products integrated and packaged in 3D with various heterogeneous parts, com- nents, and interconnections, including electrical, optical, mechanical as well as fluidic means.