SULJE VALIKKO

avaa valikko

Prediction and Classification of Respiratory Motion
97,90 €
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Sivumäärä: 167 sivua
Asu: Kovakantinen kirja
Painos: 2014 ed.
Julkaisuvuosi: 2013, 12.11.2013 (lisätietoa)
Kieli: Englanti
Tuotesarja: Studies in Computational Intelligence 525
This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. 

This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin.

In the first chapter following the Introduction  to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study—prediction of human motion with distributed body sensors—using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and thetracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier in the last chapter.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 5-6 viikossa. | Tilaa jouluksi viimeistään 13.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Prediction and Classification of Respiratory Motionzoom
Näytä kaikki tuotetiedot
ISBN:
9783642415081
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste