Dieses zweibändige Werk handelt von Mathematik und ihrer Geschichte. Die sorgfältige Analyse dessen, was die Alten bewiesen - meist sehr viel mehr, als sie ahnten -, führt zu einem besseren Verständnis der Geschichte und zu einer guten Motivation und einem ebenfalls besseren Verständnis heutiger Mathematik.
Der zweite Band beginnt mit der großen Arbeit von Lagrange von 1770/71, die später Galois inspirierte. Um sie zu verstehen, benötigt man den Begriff der Resultanten von Polynomen. Dieser wird bereitgestellt, zusammen mit Algorithmen zu ihrer Berechnung, die aus dem 20. Jahrhundert stammen. Zentral sind dann Arbeiten von Steinitz und Galois. Für diese wird transfiniten Methoden und Gruppen sowie der Geschichte beider Themen entsprechender Raum gewidmet. Viel gesagt wird auch über die Kreisteilungspolynome. Um die Transzendenz von Pi zu beweisen, werden schließlich auch noch topologische Methoden behandelt.