Within the past decade, technology has grown exponentially, and governments have promoted smart cities. Emerging smart cities have become both crucibles and showrooms for the practical application of the internet of things (IoT), cloud computing, and the integration of big data into everyday life. This complex concoction requires new thinking of the synergistic utilization of deep learning and blockchain methods and data-driven decision making with automation infrastructure, autonomous transportation, and more.
Advances in Deep Learning Applications for Smart Cities provides a global perspective on current and future trends concerning the integration of deep learning and blockchain for smart cities. It provides valuable insights on the best practices and success factors for smart cities. Covering topics such as digital healthcare, object detection methods, and power consumption, this book is an excellent reference for researchers, scientists, libraries, industry experts, government organizations, students and educators of higher education, business professionals, communication and marketing agencies, entrepreneurs, and academicians.