Some of the most common dynamic phenomena that arise in engineering practice—actuator and sensor delays—fall outside the scope of standard finite-dimensional system theory. The first attempt at infinite-dimensional feedback design in the field of control systems—the Smith predictor—has remained limited to linear finite-dimensional plants over the last five decades. Shedding light on new opportunities in predictor feedback, this book significantly broadens the set of techniques available to a mathematician or engineer working on delay systems.
The book is a collection of tools and techniques that make predictor feedback ideas applicable to nonlinear systems, systems modeled by PDEs, systems with highly uncertain or completely unknown input/output delays, and systems whose actuator or sensor dynamics are modeled by more general hyperbolic or parabolic PDEs, rather than by pure delay. Numerous examples and a detailed treatment of individual classes of problems will help the reader master the techniques.
Delay Compensation for Nonlinear, Adaptive, and PDE Systems is an excellent reference guide for graduate students, researchers, and professionals in mathematics, systems control, as well as chemical, mechanical, electrical, computer, aerospace, and civil/structural engineering. Parts of the book may be used in graduate courses on general distributed parameter systems, linear delay systems, PDEs, nonlinear control, state estimator and observers, adaptive control, robust control, or linear time-varying systems.