SULJE VALIKKO

avaa valikko

Geometric Function Theory - Explorations in Complex Analysis
88,20 €
Birkhauser Boston Inc
Sivumäärä: 314 sivua
Asu: Kovakantinen kirja
Painos: 2006 ed.
Julkaisuvuosi: 2005, 20.09.2005 (lisätietoa)
Kieli: Englanti
Tuotesarja: Cornerstones
Complex variables is a precise, elegant, and captivating subject. Presented from the point of view of modern work in the field, this new book addresses advanced topics in complex analysis that verge on current areas of research. The author adroitly weaves these varied topics to reveal a number of delightful interactions. Perhaps more importantly, the topics are presented with an understanding and explanation of their interrelations with other important parts of mathematics: harmonic analysis, differential geometry, partial differential equations, potential theory, abstract algebra, and invariant theory. Although the book examines complex analysis from many different points of view, it uses geometric analysis as its unifying theme.


This methodically designed book contains a rich collection of exercises, examples, and illustrations within each individual chapter, concluding with an extensive bibliography of monographs, research papers, and a thorough index. Seeking to capture the imagination of advanced undergraduate and graduate students with a basic background in complex analysis –and also to spark the interest of seasoned workers in the field – the book imparts a solid education both in complex analysis and in how modern mathematics works.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Geometric Function Theory - Explorations in Complex Analysiszoom
Näytä kaikki tuotetiedot
ISBN:
9780817643393
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste