Coefficient Systems on the Bruhat-Tits Building and Pro-$p$ Iwahori-Hecke Modules
Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p.LetI be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If H = R[IG/I] denotes the pro-p Iwahori- Hecke algebra of G over R we clarify the relation between the category of H-modules and the category of G-equivariant coefficient systems on the semisimple Bruhat-Tits building of G.IfR is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth G-representations generated by their I-invariants. In general, it gives a description of the derived category of H-modules in terms of smooth G-representations and yields a functor to generalized (?, ?)-modules extending the constructions of Colmez, Schneider and Vign´eras.
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa |
Tilaa jouluksi viimeistään 27.11.2024