SULJE VALIKKO

avaa valikko

Network Intrusion Detection using Deep Learning - A Feature Learning Approach
61,40 €
Springer Verlag, Singapore
Sivumäärä: 79 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2018
Julkaisuvuosi: 2018, 02.10.2018 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs on Cyber Security Systems and Networks
This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning.  In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book.



Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Network Intrusion Detection using Deep Learning - A Feature Learning Approachzoom
Näytä kaikki tuotetiedot
ISBN:
9789811314438
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste