SULJE VALIKKO

avaa valikko

Knowledge Guided Machine Learning - Accelerating Discovery using Scientific Knowledge and Data
59,20 €
Taylor & Francis Ltd
Sivumäärä: 430 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2024, 26.08.2024 (lisätietoa)
Kieli: Englanti
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field.

Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers.

KEY FEATURES






First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields



Accessible to a broad audience in data science and scientific and engineering fields



Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains



Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives



Enables cross-pollination of KGML problem formulations and research methods across disciplines



Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Knowledge Guided Machine Learning - Accelerating Discovery using Scientific Knowledge and Datazoom
Näytä kaikki tuotetiedot
ISBN:
9780367698201
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste