Computational Aspects of Polynomial Identities
A comprehensive study of the main research done in polynomial identities over the last 25 years, including Kemer's solution to the Specht problem in characteristic O and examples in the characteristic p situation. The authors also cover codimension theory, starting with Regev's theorem and continuing through the Giambruno-Zaicev exponential rank. The "best" proofs of classical results, such as the existence of central polynomials, the tensor product theorem, the nilpotence of the radical of an affine PI-algebra, Shirshov's theorem, and characterization of group algebras with PI, are presented.