Technological advances are enabling scientists to collect vast amounts of data in fields such as medicine, remote sensing, astronomy, and high-energy physics. These data arise not only from experiments and observations, but also from computer simulations of complex phenomena. As a result, it has become impractical to manually analyze and understand the data. This book describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains and uses them to define an end-to-end process of scientific data mining. This multi-step process includes tasks such as processing the raw image or mesh data to identify objects of interest; extracting relevant features describing the objects; detecting patterns among the objects; and displaying the patterns for validation by the scientists.