SULJE VALIKKO

avaa valikko

Hypercontractivity in Group von Neumann Algebras
78,50 €
American Mathematical Society
Sivumäärä: 83 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 30.10.2017 (lisätietoa)
Kieli: Englanti
In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive $L_2 to L_q$ inequalities with respect to the Markov process given by the word length and with $q$ an even integer. Interpolation and differentiation also yield general $L_p to L_q$ hypercontrativity for $1 < p le q < infty$ via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part--which varies from one group to another--is implemented and tested on a computer.

The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) $L_p to L_q$ hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. The authors' second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan's property (T).

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Hypercontractivity in Group von Neumann Algebras
Näytä kaikki tuotetiedot
ISBN:
9781470425654
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste