SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Zeta Functions for Two-Dimensional Shifts of Finite Type
68,80 €
MP-AMM American Mathematical
Sivumäärä: 60 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2013, 30.05.2013 (lisätietoa)
Kieli: Englanti
This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $mathbb{Z}^{2}$-action $phi$. In this paper, the $n$th-order zeta function $zeta_{n}$ of $phi$ on $mathbb{Z}_{ntimes infty}$, $ngeq 1$, is studied first. The trace operator $mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $mathbf{T}_{n}$ induces the reduced trace operator $tau_{n}$ and $zeta_{n}=left(detleft(I-s^{n}tau_{n}right)right)^{-1}$. The zeta function $zeta=prod_{n=1}^{infty} left(detleft(I-s^{n}tau_{n}right)right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Zeta Functions for Two-Dimensional Shifts of Finite Type
Näytä kaikki tuotetiedot
ISBN:
9780821872901
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste