SULJE VALIKKO

avaa valikko

Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients
138,00 €
Cambridge University Press
Sivumäärä: 448 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2015, 05.02.2015 (lisätietoa)
Kieli: Englanti
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients
Näytä kaikki tuotetiedot
ISBN:
9781107092341
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste