This is an advanced 1997 text for first-year graduate students in physics and engineering taking a standard classical mechanics course. It was the first book to describe the subject in the context of the language and methods of modern nonlinear dynamics. The organising principle of the text is integrability vs. nonintegrability. Flows in phase space and transformations are introduced early and systematically and are applied throughout the text. The standard integrable problems of elementary physics are analysed from the standpoint of flows, transformations, and integrability. This approach then allows the author to introduce most of the interesting ideas of modern nonlinear dynamics via the most elementary nonintegrable problems of Newtonian mechanics. This text will be of value to physicists and engineers taking graduate courses in classical mechanics. It will also interest specialists in nonlinear dynamics, mathematicians, engineers and system theorists.