The physics and mathematics of nonlinear dynamics and chaotic and complex systems constitute some of the most fascinating developments of late twentieth-century science. It turns out that chaotic behaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavour. In this book, two dozen scientists and mathematicians who were deeply involved in the 'nonlinear revolution' cover most of the basic aspects of the field. The book is divided into five parts: dynamical systems, bifurcation theory and chaos; spatially extended systems; dynamical chaos, quantum physics and the foundations of statistical mechanics; evolutionary and cognitive systems; and complex systems as an interface between the sciences.