This monograph expounds on general Yang-Mills symmetry, a new symmetry based on arbitrary vector gauge functions and Hamilton's characteristic phase functions in the gauge transformations of Abelian and non-Abelian groups. General Yang-Mills symmetry includes the conventional gauge symmetries as special cases and is useful for describing phenomena at scales ranging from the super-macroscopic such as dark matter, to the ultra-microscopic such as the quantum 3-body problem of baryons. Moreover, this symmetry supports the Broader Particle-Cosmology framework based on particle physics and quantum Yang-Mills gravity in flat space-time, which can explain why the gravitational force is always attractive. This volume also discusses how CPT invariance in particle physics suggests a 'Big Jets' model for the birth of the universe, proposing one explanation for the dearth of anti-matter in our universe. Finally, we discuss a simplified quantum shell model for N baryons with a quark Hamiltonian and a Sonine-Laguerre equation that gives reasonable eigenvalues for the energies of the 29 N baryons.