SULJE VALIKKO

avaa valikko

L^p-Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets
78,50 €
American Mathematical Society
Sivumäärä: 108 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 30.03.2017 (lisätietoa)
Kieli: Englanti
The authors establish square function estimates for integral operators on uniformly rectifiable sets by proving a local $T(b)$ theorem and applying it to show that such estimates are stable under the so-called big pieces functor. More generally, they consider integral operators associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric spaces. The local $T(b)$ theorem is then used to establish an inductive scheme in which square function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be sufficient for square function estimates to hold on the entire set. Extrapolation results for $L^p$ and Hardy space versions of these estimates are also established. Moreover, the authors prove square function estimates for integral operators associated with variable coefficient kernels, including the Schwartz kernels of pseudodifferential operators acting between vector bundles on subdomains with uniformly rectifiable boundaries on manifolds.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
L^p-Square Function Estimates on Spaces of Homogeneous Type and on Uniformly Rectifiable Sets
Näytä kaikki tuotetiedot
ISBN:
9781470422608
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste