SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Manifolds and Modular Forms
49,60 €
Vieweg+Teubner Verlag
Sivumäärä: 212 sivua
Asu: Pehmeäkantinen kirja
Painos: 2
Julkaisuvuosi: 1994, 01.01.1994 (lisätietoa)
Kieli: Englanti
Tuotesarja: Aspects of Mathematics 20
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chern class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps 0 giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Manifolds and Modular Forms
Näytä kaikki tuotetiedot
ISBN:
9783528164140
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste