SULJE VALIKKO

avaa valikko

Renewable Energy Integration to the Grid - A Probabilistic Perspective
149,50 €
Taylor & Francis Ltd
Sivumäärä: 262 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2022, 25.03.2022 (lisätietoa)
Kieli: Englanti
This comprehensive reference text discusses uncertainty modeling of renewable energy resources and its steady state analysis. The text discusses challenges related to renewable energy integration to the grid, techniques to mitigate these challenges, problems associated with integration at transmission and distribution voltage level, and protection of power system with large renewable power integration.

It covers important concepts including voltage issues in power networks, use of FACTS devices for reactive power management, stochastic optimization, robust optimization, and spatiotemporal dependence modeling.

Key Features:






Presents analysis and modeling of renewable generation uncertainty for planning and operation, beneficial for industry professionals and researchers.



Discusses dependence modeling of multi-site renewable generations in detail.



Covers probabilistic analysis, useful for data analysts.



Discusses various aspects of renewable energy integration i.e. technical, economic, etc.



Covers correlation factors, and methodologies are validated with case studies with various standard test systems.

The text will be useful for graduate students and professionals in the fields of electrical engineering, electronics and communication engineering, renewable energy, and clean technologies.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Renewable Energy Integration to the Grid - A Probabilistic Perspectivezoom
Näytä kaikki tuotetiedot
ISBN:
9780367747947
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste