The book presents an overview of multivariate statistics and their place in research. It describes the appropriate context for -- and the types of empirical questions that can best be addressed by -- each technique or family of techniques, as well as the distribution assumptions that must be met for the analysis to be meaningful. The most commonly used multivariate techniques are examined in detail: multiple regression and correlation, path analysis, principal-components analysis, exploratory and confirmatory factor analysis, multidimensional scaling, analysis of cross-classified data, logistic regression, multivariate an alysis of variance (MANOVA), discriminant analysis, and meta-analysis. Statistical notations are explained, underlying assumptions are described, and terms are defined clearly and understandably. Concepts and symbols are presented with minimal use of formulas and a generous use of real-world research examples. Each chapter also includes suggestions for additional reading and a glossary of statistical and related terms.