Der große Vorzug des Goldhornschen Skripts liegt in seiner kompromißlosen Konzentration aufs Wesentliche. Im einzelnen:
Die Auswahl des Stoffes deckt ein breites Spektrum mathematischer Konzepte und Methoden ab, die f¨ur die heutige Physik relevant sind. Im Gegenzug wird das bei vielen Dozenten und Buchautoren so beliebte Herumreiten auf angeblich erhellenden Einzelheiten ¨uberall dort vermieden, wo sie sich in der Praxis als nicht wirklich erhellend erwiesen haben. Gerade in dieser Hinsicht wurde das Skript im Laufe einer langj¨ahrigen Lehrerfahrung immer weiter optimiert. Die umfangreiche Sammlung von ¨Ubungsaufgaben liefert nat¨urlich etliche Details nach, die in der Vorlesung vermißt werden k¨onnten.
Die Anordnung des Materials folgt nicht so sehr einer mathematischen Systematik als vielmehr den kurrikularen Bed¨urfnissen des Physikstudiums. Das wirkt zwar oft etwas unkonventionell, vermeidet aber den verbreiteten Mißstand, daß wichtige mathematische Begriffe und Methoden von den Dozenten der Physik ad hoc eingef¨uhrt werden m¨ussen, weil das betreffende Material im mathematischen Grundkurs erst viel sp¨ater an der Reihe ist. Dabei werden auch Vorw¨artszitate in Kauf genommen, und diese werden didaktisch nutzbringend eingesetzt, indem abstraktere und f¨ur die Studierenden schwer motivierbare theoretische ¨Uberlegungen zur¨uckgestellt werden, bis sie schließlich als L¨osung eines schon durch mehrfache Erfahrung vertrauten Problems in Erscheinung treten.
Die Pr¨asentation und sprachliche Ausgestaltung folgt dem Prinzip, daß gute Didaktik nicht darin besteht, m¨oglichst viele Worte zu machen, sondern durch wenige gut gew¨ahlte Worte erreicht wird, unterst¨utzt durch geeignete Illustrationen und ein breites Angebot von sinnvollen ¨Ubungsaufgaben. Die meisten Behauptungen werden auch bewiesen oder hergeleitet, doch handelt es sich nur im Ausnahmefall um die detaillierte Ausf¨uhrung eines mathematischrigorosen Beweises. Zumeist ist es eine recht knappe Darstellung des prinzipiellen Gedankengangs, manchmal unterst¨utzt durch Veranschaulichungen oder physikalische Motivationen. Die Beweisteile, die am ausf¨uhrlichsten dargestellt sind, sind Recheng¨ange, wie sie auch f¨ur die Praxis des Physikers typisch sind. Manchmal wird ein leichter Spezialfall bewiesen und die dringend ben¨otigte allgemeinere Version schlicht berichtet.
Hier und da werden exemplarisch auch mathematische Beweise in aller Strenge und Ausf¨uhrlichkeit dargeboten, um die Studierenden mit der mathematischen Denk- und Ausdrucksweise zu konfrontieren und ihre Kritikf¨ahigkeit bez¨uglich mathematischer Vertrauensw¨urdigkeit einer Argumentation zu schulen. Dies scheint mir in der Tat – zumindest f¨ur die begabteren Studierenden – ein wichtiger Aspekt zu sein, angesichts einer schier un¨ubersehbaren Flut von Fachliteratur, bei der junge Wissenschaftler es oft als eine Herausforderung empfinden, zwischen vertrauensw¨urdigen und weniger vertrauensw¨urdigen Beitr¨agen zu unterscheiden. – Am anderen Ende des Spektrums finden sich ab und zu auch knappe Ergebnisberichte ¨uber tiefliegende Resultate, die den Rahmen der Vorlesung sprengen w¨urden.
Die Aufgabensammlung enth¨alt etwa zu 70 – 80 % Aufgaben, bei denen das Schwergewicht auf dem Ein¨uben von Rechentechniken liegt. Theoretische Aufgaben, die helfen, Begriffe zu kl¨aren, Beweisschritte nachzutragen, logisches Argumentieren zu ¨uben oder Ausblicke auf zus¨atzlichen Stoff zu geben, sind durchaus vertreten, aber nur zu 20 – 30 %.
Zu dem Skript geh¨ort ein sorgf¨altig gestaltetes Glossar ("Kurzfassung"), das alle formalen Definitionen und S¨atze enth¨alt und als Nachschlagewerk zur Klausur- und Pr¨ufungsvorbereitung an die Studierenden verkauft wurde.
Die Beweise und Beweisskizzen des Skripts enthalten h¨aufig Argumentationen, die eigentlich mathematisch nicht haltbar sind. In vielenF¨allen ist es m¨oglich, sie durch korrekte Beweisschritte zu ersetzen, ohne den Text aufzubl¨ahen, und dies m¨ochte ich selbstverst¨andlich tun. Wo dies nicht m¨oglich ist, m¨ochte ich deutlich erkl¨aren, daß hier eine Beweisl¨ucke in Kauf genommen wird. Im Sinne der begrifflichen Klarheit und der Schulung der mathematischen Kritikf¨ahigkeit erscheint es mir n¨amlich dringend geboten, dem Leser stets reinen Wein dar¨uber einzuschenken, ob er es hier mit einem strengen Beweis, einer Beweisskizze oder einer bloßen Plausibilit¨atserkl¨arung zu tun hat. Was als Beweis bezeichnet wird, kann ein knapp skizzierter Beweis sein, aber es darf kein fehlerhafter Beweis sein.
An manchen Stellen lassen sich Beweise noch verk¨urzen oder vereinfachen, manchmal unter Heranziehung neuerer Methoden im elementaren Kontext. Ich m¨ochte der Sprachbarriere zwischen Mathematik und Physik entgegenwirken, indem ich ¨uberall dort, wo f¨ur ein und dieselbe Sache unterschiedliche Konventionen oder Terminologien benutzt werden, explizit auf diesen Umstand hinweise und die beiden Terminologien leichberechtigt nebeneinander stelle.