Goal-Directed Decision Making: Computations and Neural Circuits examines the role of goal-directed choice. It begins with an examination of the computations performed by associated circuits, but then moves on to in-depth examinations on how goal-directed learning interacts with other forms of choice and response selection. This is the only book that embraces the multidisciplinary nature of this area of decision-making, integrating our knowledge of goal-directed decision-making from basic, computational, clinical, and ethology research into a single resource that is invaluable for neuroscientists, psychologists and computer scientists alike.
The book presents discussions on the broader field of decision-making and how it has expanded to incorporate ideas related to flexible behaviors, such as cognitive control, economic choice, and Bayesian inference, as well as the influences that motivation, context and cues have on behavior and decision-making.
- Details the neural circuits functionally involved in goal-directed decision-making and the computations these circuits perform
- Discusses changes in goal-directed decision-making spurred by development and disorders, and within real-world applications, including social contexts and addiction
- Synthesizes neuroscience, psychology and computer science research to offer a unique perspective on the central and emerging issues in goal-directed decision-making