SULJE VALIKKO

avaa valikko

On the Differential Structure of Metric Measure Spaces and Applications
84,70 €
American Mathematical Society
Sivumäärä: 91 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2015, 30.07.2015 (lisätietoa)
Kieli: Englanti
The main goals of this paper are:

(i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative.
(ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like $Delta g=mu$, where $g$ is a function and $mu$ is a measure.
(iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
On the Differential Structure of Metric Measure Spaces and Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9781470414207
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste