Dieser Grundkurs Funktionentheorie präsentiert in seinen ersten drei Kapiteln ohne Umwege die wichtigsten Elemente der komplexen Analysis einer Veränderlichen, von den komplexen Zahlen über die Grundzüge der Cauchy-Theorie bis hin zum Residuensatz.
Darauf aufbauend werden im vierten Kapitel analytische Funktionen mit vorgegebenen Nullstellen und Polstellen konstruiert, zum Beispiel die Gamma-Funktion und die elliptischen Funktionen. Das abschließende fünfte Kapitel über geometrische Funktionentheorie stellt Zusammenhänge zwischen konformen Abbildungen und der Topologie ebener Gebiete her und zeigt, mit welchen Mitteln analytische Funktionen über ihren Definitionsbereich hinaus fortgesetzt werden können.
Wie im Grundkurs Analysis wird auch hier viel Wert auf die didaktische Ausarbeitung gelegt, vor allem aber endet jedes Kapitel mit einer passenden Auswahl von Anwendungen aus der Mathematik, Physik oder den Ingenieurwissenschaften. Zahlreiche Übungsaufgaben und Illustrationen runden das Bild ab.
Das Buch wendet sich an Bachelor- und Masterstudierende in Mathematik, Physik, Naturwissenschaften und Informationstechnologie. Es ist geeignet zum Selbststudium, als Begleitlektüre und zur Prüfungsvorbereitung.
In der zweiten Auflage wurde der Text gründlich korrigiert, überarbeitet und besonders in den Abschnitten über den Residuensatz, die Zetafunktion, Automorphismen von Gebieten und normale Familien deutlich erweitert. Vor allem aber liefert das Buch jetzt auch Lösungen zu sämtlichen Aufgaben.
Der Autor
Klaus Fritzsche ist Autor zahlreicher erfolgreicher Lehrbücher, u.a. des beliebten Brückenkurses „Mathematik für Einsteiger“ und der Grundkurse Analysis 1/2.