Many advances have taken place in the field of combinatorial algorithms since Methods of Mathematical Economics first appeared two decades ago. Despite these advances and the development of new computing methods, several basic theories and methods remain important today for understanding mathematical programming and fixed-point theorems. In this easy-to-read classic, readers learn Wolfe's method, which remains useful for quadratic programming, and the Kuhn-Tucker theory, which underlies quadratic programming and most other nonlinear programming methods. In addition, the author presents multiobjective linear programming, which is being applied in environmental engineering and the social sciences. The book presents many useful applications to other branches of mathematics and to economics, and it contains many exercises and examples. The advanced mathematical results are proved clearly and completely.
Series edited by: Robert O'Malley