SULJE VALIKKO

avaa valikko

Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths
81,20 €
American Mathematical Society
Sivumäärä: 101 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2018, 30.10.2018 (lisätietoa)
Kieli: Englanti
For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmuller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths.

The authors' model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations and are interpreted as generalized Ptolemy relations for lambda lengths.

This approach gives alternative proofs for the main structural results from the authors' previous paper, removing unnecessary assumptions on the surface.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths
Näytä kaikki tuotetiedot
ISBN:
9781470429676
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste